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ABSTRACT

We explore numerically the behavior of a method of

describing the time dependent quantum mechanics of a curve

crossing system. The two nuclear wave functions corresponding to

the two electronic states are each described by a Gaussian wave

packet. The packet describing the incident state mimics the

initial wave function, and the other packet is created by the time

dependent Schroedinger equation. They are both propagated by

using a variational method. The packets interact and we do not

assume that they have a small width. Exploratory calculations are

made for curve crossing dynamics at low kinetic energy above the

barrier of the lowest adiabatic state, for tunneling, for multiple

crossings, and for a curve crossing system which is strongly

coupled to a harmonic bath whose motion is described by a mean

trajectory classical Langevin method. .
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I. INTRODUCTION

I.1 Description of the problem and its solution.

Several recent papers 1-5 have shown that the Gaussian wave

packet (GWP) method, originated by Heller and his coworkers and

developed by him and others613, can be very useful in treating

atom diffraction,1 H diffraction,2 H2 rotational excitation2 and
22

H2 and Br2 vibrational excitation by collision with a rigid
32

lattice, as well as atom diffraction caused by collision with a

surface undergoing thermal motion.
4

The experience accumulated so far-shows that the application

of the GWP method to surface science problems is very promising.

Satisfactory accuracy can be obtained with a relatively small

amount of computer time, and the results are easy to interpret in

terms of simple, intuitive, classical-like concepts.

There is however a group of problems for which the

application of the GWP method, in the form practiced so far, meets

with conceptual difficulties. A-good example is the adsorption of

a Li atom approaching a metal surface at thermal energies. It is
widely believed that this process should be described by a curve

crossing model, in which Li sticking is a transition from a

neutral to an ionic state. Since the motion of the Li atom is

nearly classical it seems profitable to try to describe it by

using Gaussian wave packets. A correct GWP description of such a

process requires the splitting of the incident packet into two-[

packets, one representing the ion bound to the surface and the

other the neutral backscattered into the vacuum. Packet splitting

is also required for describing sticking caused by tunneling, by

excitation of internal modes of the molecule, by excitation of |

modes in the solid or by transfer of energy from perpendicular to

parallel translational modes. The GWP methods employed so far 1 1 3  ,
conserve the number of packets and can describe the above

processes only if they are suitably modified. In this paper we

present such a modification.

To describe the main ideas we consider the case of a Li atom

approaching a metal surface. This is characterized by a wave

-f - t-. . . ff'-.> ft..... .. . ." - . .. . - ', .. -. . • - -.
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function of the form

*(x,R;t) = Gl(R;t)Ol(x,R;t) + G 2 (R,t)t 2 (x,R;t) , (1.1)

where t (x,R) is the ionic state and I2 (x,R) is the neutral one;

G (R;t) and G2 (R;t) are the nuclear wave functions associated with12
the electronic states 41 and 2 R and x represent all the

nuclear and electronic coordinates, respectively. The GWP method

assumes then that G and G are Gaussian wave packets of the kind
1 2

used by Heller:

G (R;t) = exp(li/h)[ci(t)(R-Ri(t)) 2+Pi(t)(R-Ri(t)+Yi(t)]}

(1.2)

If a neutral Li atom approaches the surface, we have initially

G1 (R;t)aO, while the parameters in G2 (R;t) are determined by the

properties of the incident atom (i.e. direction of incidence,

kinetic energy, etc.) The approach of the Li atom to the surface

can be described by the usual GWP method, up to the point where

the transition to the ionic curve starts taking place. This

transition is equivalent to the birth of a second packet, namely

G (R;t). As the time evolves the two packets interact with each
2other and build up the correct ionization probability IG1 (R;t)I "

To handle this situation the GWP procedure must be extended

in several ways. First, we must find a way of creating G il at the

proper moment; we use for this a short time Green's function which

generate GI from G2P through the coupling between the ionic and

the neutral states. Once the new packet is created, it must

interact with the initial one, so that their joint evolution leads

to the correct ionization probability. This is achieved by using

the minimum error method.10 Finally, we do not assume that the

packets are narrow throughout the interaction region since this

approximation exagerates the classical character of the Li+ motion

and leads to errors.
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1.2 Applications

The resulting MEM split Gaussian wave packet (MEM-SGWP)

method can be used to explore several physical and computational

issues pertinent to the above model. First we investigate whether

the split packets behave reasonably and whether SGWP is

numerically stable; then we examine several simplified versions of

the theory to see whether they work well. Numerical studies meant

to answer such questions are presented in Section 111.2.

A more subtle and uncertain matter is whether SGWP can

generate tunneling behavior, that is, whether an incident packet

whose energy is below the height of the barrier on the lowest

adiabatic potential, can be split to create a packet behind the

barrier. The customary GWP method will not permit tunneling since

the center of the incident packet moves on a classical trajectory.

Calculations demonstrating tunneling behavior are presented in

Section III.3.

Further numerical calculations (Section 111.4) attempt to

establish when a two state description is necessary and what are

the consequences of this necessity. Even in those cases (e.g.

charge transfer) where a two diabatic state description is

convenient it does not always follow that a two state description

is also needed in the equivalent adiabatic representation. We

expect to need two adiabatic states when the energy of the

incident packet is comparable with gap between the states. In

such cases the "transmission" of the wave function, through the [
region where the two adiabatic states are closest to each other,

is impaired as if the upper state helps "reflect" the incident

packet. Calculations showing that SGWP generates such behavior

are presented in Section 111.4.

In a one dimensional system the creation of a packet on the

ionic state does not lead to binding: the ionic packet oscillates

in the well and splits into an outgoing neutral packet and an

ionic packet whenever it goes through the crossing region.

Repeated occurrence of this process makes the amplitude of the . -

nuclear ionic state go to zero. The above sequence is the GWP

r.o
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description of a predissociation process. The calculations

presented in Section IV show that a multiple crossing SGWP model

leads to such behavior.

Finally in Section V we explore the curve crossing behavior - -

of a neutral atom which is ionized upon approaching a moving

lattice. The manner in which the thermal lattice motion modifies

the behavior of the packets is described by coupling the MEM-SGWP

equations to a mean trajectory classical Langevin equation

describing lattice motion. In surface science such a model is.

relevant with regard to sticking of alkali, which is believed to

require a two state description; previous work on adsorption-

desorption dynamics 1 4 ' 1 5 considered one energy surface only. The

calculation is also relevant to the problem of tunneling in

systems subject to thermal noise, which has received a lot of

attention lately.
1 6

All the calculations presented here are exploratory and

intend to test the qualitative behavior of SGWP. We plan to study

the accuracy of the method once we develop an exact procedure for - -

solving the problems described above.

1.3 Other methods

Most of the existing work applying curve crossing models to
17-32surface science problems has often been concerned with high

kinetic energy phenomena, where sticking is not an issue and

classical approximations of varying quality are fairly adequate.

Here we are especially concerned with the limit of very low

kinetic energy where single classical trajectory methods are not

likely to be useful and quantum effects (both for the electronic

excitation and perhaps the motion of the light atom) are
important.

There are a number of approaches, other than GWP, that might
be usefully applied to the problem of interest here. The mean

28-29, 32-39
trajectory approximation (MTA) uses one classical

trajectory to describe the motion of the nucleus. The two state

aspects of the problem are partly incorporated by using in the

classical equation an average potential energy which includes

. ... . . . . . . . . . . . . . . .
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contributions from both the ionic and the neutral surfaces, in

proportion to their instantaneous occupation (see Section III for
39details). Recent calculations show that at low kinetic energies

the method leads to unphysical behavior.

WKB theory has been extended to curve crossing
40-43

problems and its main limitation, as far as surface science

is concerned, is the difficulty of extending it to three

dimensions.

The multiple trajectory method of Tully and Preston4 4 is

frequently critized because it neglects interference effects;

since these are likely to be washed out by thermal averaging (when

coupling to phonons is included) this is not a significant flaw

here. A potentially important limitation is that it will miss

quantum effects for light particles.

Another fruitful line of research was originated by attempts

to implement and/or simplify the semi-classical method developed

in several elegant papers of Pechukas. 45 Straight applications of

Pechukas' method led to inefficient numerical codes and numerical
46instabilities. The simplifications introduced by George and

Miller 4 7 offer some remarkable insights in the physics of the

problem, but have not yet reached the computational simplicity

characterizing the GWP approach.
48a

Finally Herman and Freed's implementation of early work
49b

of Laing and Freed leads to an interesting method which however

seems rather difficult to apply, especially for many dimensions. -

In this context SGWP has several appealing features: it.is

easy to use in three dimensions; it is computationally efficient;

and it provides an intuitive classical-like description of time

dependent quantum mechanical process.

i p.
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Ii. THE MODEL

11.1 The Hamil.tonian
49We consider a system described by two diabatic electronic

I states 0 (x,R), 1 1,2 and the Hamniltonian matrix

Hij(R) = dxI.(x,R)H(x,R)O (x,R) ,(11

with

H ii(R) W W0{exp[-2of(R-R 0)] + (..j) exp[-ct(R-R 0)(1.2

i--i

+ (-1) 1t1 e/2

and

2 2H =(pAe/2) exp{-cE (R-Re) 1(11.3)

The "Ionic curve" H 11is a Morse potential whose asymptotic energy

(i.e. the energy for R-) is not zero, as customary, but Ae/2.

The asymptotic energy gap between the two states (i.e. the

"ionization potential") is Ae. The binding energy of the ion to

the surface is U 0 and p is a constant characterizing the strength

of the coupling between the states. The off diagonal element H'12

peaks at R=R which is the position where H and H cross.
c11 12

The values of the parameters used in the calculations

presented here are listed in Table I. The corresponding

jHamiltonians are called Hamiltonian I and II. In Figs. 1, and 4

we plot the diabatic potential surfaces, the adiabatic ones and

the coupling H 12 for these Hamiltonians.

Since O.l i=1,2 are diabatic states the coupling between

them takes place through H 12 ; therefore, for simplicity, we ignore

other coupling terms and set 
4 9

n
idx 0 (-,R) It x (x,R) = 8. . (6-.4)

J n j no

Using the wave function (I.1) and the conditions (114) in

the time dependent Schrodinger equation leads to

Hii( ) =Wo~e p[- (R-o) ] + (-~ j xp[- (R-o)]}-.
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ih3Gi(R,t)/3t = (K + H. (R))G + HijG j , (11.5)

where K is the kinetic energy operator. We solve this equation

under the assumption (which is the essence of Heller's method)

that the functions G. have the form (1.2) and maintain it at all

times; the effect of the collision is to change the parameters

appering in (1.2). In the present work we derive differential

equations and initial conditions for ai, Ri' Pi and 1, and solve

them numerically for the problems specified in Section I.

11.2 The initial conditions

II.2.a. The creation of a new packet

Consider, for illustration, the case when the colliding

particles are initially in the electronic state 2. The parameters

of the packet G (R;t) are determined by the initial conditions,
2

which also set G (R;t) M 0.
Since all Heller-like methods conserve the number of

Gaussians, we must make a modification that will split the

incident packet into a "neutral" and an "ionic" one. To achieve

such splitting we use the formal solution of Eq. (11.5):

t
IG 1(t)>=IG 1(to0)>-(i/h) I dt exp(-(i/h)[K+H 11j(t-t')}H12IG 21t')>

t
0

(1I.6)

Here to is the time at which the packet IG 2(t )> begins to overlap

spatially with H12 This is the last time step in the integration

of the differential equation (11.5) for which we can maintain

IG (to)>=O. In the next time step we must create a new packet

IG (to + T )> whose functional form is determined from (11.6). By

using a very small value for T we can replace the integral with T

expj-(i/h)[K+H I TiH IG (t )> and the exponential operator with11 'go 2 o
its short time limit. This gives

1/2G 1(R;to0+T) = -iT/h) (m/2TnihT)

r
. ..... .
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2
JdR'exp((i/h)[(m/2T)(R-R') -H (R')])

H2 1 (R')G (R;t)

(11.7)

However, since T is arbitrarily small we can use - with arbitrary I

* accuracy- the stationary phase approximation which replaces

H 1 1 (RI) with it's second order expansion in powers of (R-R').

Since in the present model H2 1 (R') and G (R';t ) are both

* Gaussians, the use of the above expansion allows us to perform the

integral in (11.7) analytically; this gives for G (R;t +T) a

Gaussian.

We can summarize this whole procedure by stating. that we

geerteG 1 o G2 by using first order perturbation theory with

1 2"

respect to the small parameter H 2 and a stationary phase
12' 2

approximation with respect to the large parameter ml /hT, where 1
is a length over which the potential H changes. Both

11
approximations are arbitrarily accurate since T is arbitrarily

small.

II.2.b The initial parameters of the incident packet

Since in all GWP methods the parameters of the Gaussian wave

packets evolve according to first order differential equations,

the theory is not defined unless it provides a prescription for

the choice of the initial conditions. In the GWP method this

simple requirement can become a delicate and ambiguous matter.

In general, the time dependent theory of collisions uses an

initial wave function which mimics the pre-collision state

prepared by the experimental set up. This causes difficulties for

the GWP theories since it is unlikely that anyone would want to do

-at least in the foreseable future - experiments in which the

initial state is a narrow wave packet. To understand why this is

the case we consider how an idealized experiment of this kind

might be done. We can prepare a wave packet by measuring the

position of the "projectiles" (i.e. the incident molecules) before

they reach the surface. To do this we must intersect the

projectiles beam with a probe beam designed to overlap with it in

r
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a very small volume I3. In such an arrangement the deflection of

a probe particle at the time t signals the fact that a projectile

was present in the volume I3. The state of that projectile can be

adequately described by a packet of width 1, whose center was

located in the probe volume at to. The packet thus formed

continues to travel towards the surface, collides with it and is

scattered into the detector; the particles in a plane state

which went undisturbed through the volume - have the same fate.

The detector registers the arrival of both the packet and the

plane wave and cannot distinguish between them. To measure only

the arrival of the deflected wave packets we must lower the flux

of incident projectiles to the point that whenever a projectile

scattered by the surface is detected in coincidence with the

deflection of a probe particle we can be fairly certain that we

are dealing with packet scattering.

Since there is a very low probability that such difficult

experiments will be performed we must decide what is the

experimental significance of these GWP calculations. One point of
10view is that in all experiments - other than the one described

above - the packets have no reality. They are merely "pieces" of

the wave function, introduced for computational convenience, and

only the coherent sum of such packets - which represents the total

wave function - has any meaning. Therefore the choice of the

initial parameters in each Gaussian G should be made so that Z G

best fits the initial wave function. I  a

Another point of view is that a Gaussian wave packet state

is a limiting case in quantum mechanics, which we might call

corpuscular (as opposed to wave like), which provides a reasonable

description of a semi-classical time dependent processes. This is r
the point of view which, for the sake of simplicity, is adopted

here.

Unfortunately this interpretation does not provide a

prescription for choosing the initial values of all packet's

parameters. We can choose R2 (t=O) so that the packet is just

2.
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outside the interaction zone; we can select P2 (t=O) /2m to give

the initial energy (there is a slight error involved in doing

- this); we can choose a normalized packet and thus have
exp(-21my2/h) (Mr/2Ima2)/2 = 1. Since the initial phase of the

2 2
* packet is irrelevant we can choose Re'y2 (t=O)=O. We are thus left

with two unknown parameters, Rea2 (t=O) and Ima2 (t=o).

To get the calculation started one customarily follows
6Heller who recommends a choice of parameters that would give a -

narrow minimum uncertainty wave packet at the most important point

on the trajectory. In potential scattering this point is the
6turning point. In the present case there is some ambiguity since

we can choose either the crossing point or the turning point,

which are both important. We have selected the former on the

subjective belief that the transfer from one curve to another is

the most important event in the present system. Therefore we use

the equations of motions for Rea(t) and Ima(t) to select the

initial values Rea(t=O) and Ima2 (t=O) that will give Rea 2 (tc)=O
2 1/22

and a small width I2(tc) (/ 2 Ima2 (tc))
2 , at the time t at

which the center of the packet G reaches the crossing position2Rc. Specifically we chose Rea 2 (tc)=O and a large value for

Ima 2 (tc) and perform a backward propagation from R to the initial

position R2 (O), by using the equations of motion for Rea and Imcx
22 2

on the surface H2 2 (R), without any coupling to the state 1.

We note that we see no compelling a priori reason to follow

Heller's recommendations. There is some a posteriori _

justification since in the past1 - 6 such choices led to accurate

results which were stable with respect to variations of the

initial values chosen for c(t=O). 1 4 ,6  We find that the same

stability exists in the present system but we do not necessarily

expect this to be the case for new problems of a different

character. At this time we regard this ambiguity as a temporary

nuisance which can be avoided by using GWP-s to fit the initial ..

wave function that is prepared experimentally.

11.3 The propagation of the wave packets

Once the parameters of the initial G packet are chosen and

,*_ "_* . , . 9i. : >: ,. , . -, - • ...... * -.. .-; . . . / . . .. . .. , * ._._. ._. , ._.-. . .

2 ~ , .~~-



12

the new G1 packet is created we must select a scheme for their
6propagation. The simplest Heller scheme assumes that the packets

remain narrow throughout the collision, and move independently.

Skodje and Truhlar, 8 and Heather and Metiu9 have shown that the

first assumption does not work well for packets which, like G , -

are trapped in an anharmonic well. The second assumption - which

is reasonable for the problems that were of interest to Heller 6 -

is untenable in the present case, since the amplitude of the

packet G1 must grow at the expense of that of G2 ; this cannot be

achieved if the packets are decoupled.

For these reasons we are using for the propagation a
10variational procedure which we call the minimum error method

(MEM) which does not make the assumptions mentioned above. The

only approximation is that in the course of time the wave

functions G1 and G remain Gaussians.

In working with other systems Sawada, Heather, Jackson and

Metiu10 have shown that sometimes the use of one Gaussian per

electronic state does not offer enough flexibility in the

variational wave function; improved accuracy can be obtained by

using nuclear wave functions which are sums of Gaussians coupled

to each other. We have developed such a method for the curve

crossing problem and preliminary numerical tests show it to be

rather expensive. Therefore at this time we prefer to use the

present one-Gaussian-per-electronic-state model.

The variational equations obtained by using the minimum

error method are given in the Appendix. The equations are

transformed by using Heller's P-Z method 6 and the resulting

differential equations are solved by using a fourth order Runge-

Kutta method with variable step size.

11.4. Numerical details and the units.

All the calculations presented here were carried out with

the Hamiltonians defined by Eqs. (11.1-3) and the parameters given

in Table I. We use a "natural" system of units with a- 1 for.,

length, (v 0) for time and hv 0 for mass; the parameter a

controls the range of the potentials (see Eqs. II. (2-3)) and v

0P
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is the initial velocity. The latter is the expectation value of

the velocity operator -(iti/M)3/3R for the initial wave packet and

it is equal to P2 (t)/M, where P2 (t) is the momentum of the packet

G2 (see Eq. 1.2). An important quantity is Massey's parameter X =

A e/?Cv o , which is the asymptotic energy gap Ae (i.e. the

ionization potential) in the energy units hav 0
The matrix elements H corresponding to the parametersij

given in Table I are shown in Figs. 1, 4 and 8, together with the ...

corresponding adiabatic states. On the same figures we have

indicated by arrows the kinetic energies of the incident packets " ".

used in the present calculations. These are labelled by the

values of the Massey parameter X, whose inverse is proportional to

the incident velocity. Note that for a particle in a GWP state G2 -
2 2 2the kinetic energy <G2 1(-i /2m)3 /3R 20 > differs from the

2 2
classical energy P2 (t) /2m of the center of the packet. The

2
difference, denoted AP /2m, is shown in Table II, which also shows

22
the values of X, of P 2/2m and the difference between the kinetic .

energy of the incident packet and the height of the barrier on the
2

lowest adiabatic state. Note that AP 2 /2m is very small compared
2tO the "classical" kinetic energy of the packet P2 (t=O) /2m, ''

because we use a spatially broad packet which has a narrow spread

in the momentum space.

-4

L4!

t -.
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" III. PACKET SPLITTING FOR ONE CROSSING

III.1 The behavior of SGWP method and its comparison with MTA and

LHA.

In this section we report calculations with the Hamiltonian

I, defined by Eqs. (11.1-3) and the parameters listed in Table I.

The matrix elements Hij as well as the corresponding adiabatic

states are shown in Fig. 1. We examine the behavior of the

packets generated by the split GWP method and compare them to that

given by simplified versions of the theory.

Since we compare the present calculations (MEM) with the

mean trajectory approximation (MTA) and the local harmonic

approximation (LHA) we describe them briefly here. MTA assumes

the wave function 
28

*(x,R;t) = G(R;t)[c1 (t)$l(x,R) + c2 (t) 2 (x,R)] , (III.1)

1 228

where G is a GWP of the form (1.2). One can show2 8 that the

center of the Gaussian G moves according to Newton's equation with

the force -Z Z ci(t)c (t)3Hi (R)/aR. While this force depends on
the instantaneous populations of the two states and the phase

difference between the corresponding amplitudes, it is unable to

generate a nuclear motion which has a "two trajectories"

character. This shortcoming is important only at low incident

kinetic energy.

The local harmonic approximation (LHA) uses one packet for
6each electronic state and assumes that G and G2 are narrow12throughout the collision so that the integrals in which they are .-.

involved can be computed by the method of steepest descent or the

stationary phase approximation. This simplifies the differential

equations which give the evolution of the parameters in G and G1 2 ...
and speeds up their integration. Physically the use of narrow

Gaussian amounts to taking a semiclassical limit.

In all the calculations presented here we assume that the

*. initial state is neutral. The packet G2 is constructed as

discussed in Section II.2b and the packet G1 is created as

. *. . . . . .
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described in Section II.2a.

In Fig 2 we show how the centers of the two packets move,

for various incident kinetic energies of G2 . The time evolution

of the corresponding state occupation probabilities is shown in

Figs. 3.

Let us examine in detail Fig. 2a which illustrates the

motion of the two packets. At the initial time the center of the

packet G 2 is located at R 2 = 10, and that of the newly created G

is at R1 = 8.2. The new packet is closer to the crossing point

located at R =5 (see Fig. 1)) than the incident one, but they are

both far from it. After about 5 time units the packet G catches

up with G2 . In all the calculations carried out so far the new

packet G is created closer to the crossing point and G2 catches
1 2 2

up with it because its energy of (i.e. <G2 -h 7V /2mJG 2 >) at the

moment of GI's birth is larger than that of G1 . At the time 6.5

the packet G2 reaches its turning point, i.e. its center turns

around and moves away from the surface. Note that the turning

point of the center (at R=5.4) is not the classical turning point.

This behavior is different from that given by the simplest version

of Heller's theory - which makes the local harmonic approximation

(LHA) - in which the center of the packet moves classically and

turns at the classical turning point. As shown by Heather and
11

Metiu if LHA is not made the center of the packet does not move

classically and behaves like a "fuzzy ball" which turns upon

collision with a repulsive potential before its center reaches the

wall. Furthermore, the coupling between Gaussians introduces a

new force in the equation of motion for R2 (t), which has no

classical analog.1 0 '1 2  This can also affect the trajectory and
12

the location of the turning point.1 2

While the packet G2 turns around and leaves the scene of the

action, the center of G is accelerated towards the wall of the

potential H turns around at R 1.2, is trapped in the well

and oscillates in it. The motion of this packet does not have to
11

be classical but it happens to resemble classical motion. In

the cases in which the energy of G exceeds the dissociation
1~::::
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energy of H the packet escapes from the surface.

The Figs. 2b-d correspond to different kinetic energies of

the incident packet and show the same general behavior: the split

packets move in a nearly classical fashion on the two surfaces.

By comparison the mean trajectory approximation fairs

poorly. The packet G representing the incoming particle manages

to penetrate above the ionic well and for a brief period it moves

similarly to G 2. However when it reaches the crossing point for

the second time it changes its behavior to resemble G . This

happens because at t=5 the effective potential Veff = Z Z c *

c (t)H 1 (R) switches from resembling H22 to resembling H1 1

(Ic21 becomes small and Ic 1 grows, as seen in Fig. 3a.) At the

time t=11 the behavior is reversed because Ic21 starts growing

rapidly again and Veff - H 2 2.

Since packet trajectories are not observables we should

judge the usefulness of MTA by comparing its predictions for the

occupation probabilities to those of MEM-SGWP. This is done in

Figs. 3a-d. The results obtained with MTA are consistently poor.

We note that a detailed numerical analysis of MTA shows that at
33

low kinetic energies MTA has rather unphysical behavior.

The LHA approximation for the split Gaussians does give

trajectories which are, qualitatively speaking, well behaved.

However the asymptotic values of the transition probability are

different from those of MEM-SGWP as shown in Table III.

We have found that all the results reported here are stable

with respect to the choice of the initial width of G 2 and of the

point where G 1 is first created. If G is created too early (i.e.

at a distance which is too far from the point where H starts
12being different from zero) subsequent propagation makes it

disappear (i.e. its amplitude goes to zero). If it is started too

late (i.e. in the crossing region) the results are strongly

dependent on the starting point. If G is created in a strip of
1

about 1.5A, located far from the crossing point but in a region

where H is not exactly zero, its properties are independent on
12

the point of creation. In all cases we find that immediately
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after the G s appearance the parameters in the Gaussians undergo

fast transient changes and then settle to a smooth and physically

reasonable evolution.

111.3 Tunneling within SGWP

In this section we study systematically how the packets

behave as the energy of the incident packet changes from being

above to being below the barrier on the lowest adiabatic state.

The calculations are carried out with the Hamiltonian II defined

by Eqs..(II.l-3) and the parameters given in Table 1. The value of

Sis 0.3 and the mass is that of Li. The matrix elements H.. (R)

are plotted in Fig. 4 together with the potential energies of the

corresponding adiabatic states. The incident kinetic energies are

labelled by the values of X and are indicated on the graph. The

difference between the incident kinetic energy and the top of the

barrier on the lowest adiabatic state is given in Table II.

The trajectories followed by the MEM-SGWP packets is shown

in Figs. 5a-f. The general behavior parallels that already seen

ithe sequence shown in Fig. 2. In the first three calculations

(e.X =100, 110, 120) the kinetic energy is above the barrier

and in the last three (Figs. (6d-f)) it is below. The

trajectories are only slightly modified as the incident energy is

slightly lowered, with no apparent trauma when the energy gets

* below the barrier. The lowest energy curve is somewhat peculiar

since both packets turn around. This is not acceptable behavior

for the ionic packet G1 but it is not cause for concern: the

amplitude of the misbehaving packet is completely negligible!

It is more interesting, from the point of view of tunneling,

to monitor the total energies of each packet as a function of

time. At this point it is necessary to make a few remarks

concerning the energy in the SGWP theory.

The total energy of the system is

H(t)=N(t) J'dxdRI4,*(x,R;t)H O~(x,R;t) (111.1)

* with the normalization

. .. . . . ... . . . . .?.... 4
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N(t) a SdxldR**(x,R;t)o(x,R;t) = J $dRGi(R;t)Gi(R;t). (111.2) -

By using (I.1) in Eq. (III.1) we can write

H(t)=N(t)- Z dRG 1{K+H 1 1 (R))G +N(t)- 2ReldRG*(R;t)H 1 2 (R)G2 (R;t)

(111.3)

The terms In the sum represent the results that would be obtained

in a state selected energy measurement (e.g. E (t) Is obtained if

the energy of the ionic component is measured). The last term in

(111.3) is an energy contribution due to quantum interference

between the nuclear wave functions.

In Figure 6 we plot the time evolution of the energies

E = dRG[K+Hi(R)]G /XdRG G (III.4)

which differ from the terms appearing in the sum in Eq. (111.3)

only through normalization. We believe that plotting E (t) as a

function of time gives a feeling for the rate of energy exchange

between the packets; furthermore the position of El(t) and E(t)

with respect to the barrier on the lower adiabatic states can be

used as an indication whether tunneling takes place.

In Fig.6a we show the evolution of E.(t) for X=100. This

corresponds to a kinetic energy above the barrier on the lowest

adiabatic state and below the energy of the upper adiabatic state -

(see Fig. 5). The energy of the newly formed packet GI at the
time of formation (i.e. t=7 is much higher than that of the

incident packet. This does not cause any problem with energy

conservation. To show this we write the total energy as

E(t) Z 1 (t)Ei(t) + N(t) - 2Re•dRGH G (111.5)
i=1

where

i(t) = fdRGiGi/ Z 1dRGiGi  (111.6)

is the probability that the particle is in the state i. The total

-. . . ..
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energy E(t) is conserved at all times even when E (t) is very

large, because when E (t) grows,(? (t) becomes small; furthermore

the interference term can also compensate some of the changes in

E (t) to keep E(t) constant. The same kind of reasoning explains

how it is possible that total energy is conserved in the

asymptotic channels (i.e. bound G and unbound G2 ) even though the

packet energies Ei are changed by the collision.

We note several interesting results concerning the energy of I
the packets. In all our calculations the energy of the newly
formed packet G 1 is above the asymptotic value H (R-w). Thus the

center of the packet is not placed, when it is created, in a

classically forbidden region of the diabatic state H1 1 (R). In

fact, in all cases in which the packet G1 manages to penetrate in

the region above the ionic well it does so without going through a

classically forbidden region. We emphasize that in our

propagation scheme we do not use a quadratic expansion of the

potential and do not assume independent Gaussians. Thus neither

the motion of the center of the packet (i.e. the evolution of

R (t) and P.(t)) nor the energy of the packet are classical, so
i I

there is no a priori reason to expect that the trajectory of E (t)

is at all times in a classically allowed region. Moreover

tunneling is so much associated, in our mind, with barrier

penetration that the above result is somewhat surprising.

It is interesting to note that in Fig. 6f, corresponding to

the lowest incident kinetic energy, the packet G1 cannot penetrate L

behind the adiabatic barrier. The E1 (t) curve comes down towards

the H11 surface and it is turned around by it. It appears that

the particle emerges from the surface in an ionic state, but this

is not the case. As shown in Fig. 7 the probability that G exits
1

- for the kinetic energy used in Fig. 6f - is initially very small

and it goes to zero; in contrast in the cases 6a-e, in which

tunneling takes place, the probabilityP (t) grows to finite

values (see Fig. 7).

111.4 Two states versus one state representation

Several problems in surface science are conveniently
S(

........................................ . o
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U

represented in terms of a two state model. An obvious example is

alkali adsorption on metals where the adsorbed alkali is ionic and

the incident one is neutral. The two state character of the

system is revealed by desoprtion experiments in which both ions
and neutrals are observed. Another example is H dissociative

2
adsorption, which can be thought of as a transition from a H2-Me

51
state to a 2H-Me state (Me means metal surface). In this case

no 2H desorption has been observed to suggest that a 2H-Me state

is involved in dynamics. Therefore while one might prefer to use

a two diabatic state description of H 2 scattering or desorption it

is not at all clear that a two adiabatic states description is

necessary.

It is therefore of interest to establish some criteria

whether one or two state descriptions are necessary. A reasonable

condition can be obtained by comparing the gap between the two

lowest adiabatic states with the kinetic energy of the incoming

particle: if the latter is much smaller only one state is needed.

Of course, when the two surfaces are unknown, which is generally

- the case, one would like to have some observable effects which

signal the presence of the second state. In order to see if such
effects exist we carried out calculations with a Hamiltonian in

which the adiabatic surfaces are similar to those used in the

previous section (Fig. 4), but the gap between them is smaller

(Fig. 8). This is obtained by using the Hamiltonian II defined by

Eqs. ( 11.1-3) and the parameters of Table I with p=O.1 instead of

1=0.3.

In Fig. 9 we show the energies EI(R(t)) and E 2 (R(t)) of the

ionic and neutral packets, respectively. The incident kinetic

energies are labelled by the Massey parameter X; the corresponding

kinetic energy and the difference between it and the height of the

barrier are given in Table II. The values of X are chosen to give

the same values for the barrier height minus the kinetic energy as

those used in the previous section.

The most interesting result is that lowering the upper

adiabatic state, to get it closer to the bottom one, leads to

7.
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higher neutral population. This happens as if the upper state

helps reflect the incident packet. This effect can be seen by

comparing the probabilities shown in Fig. 10 to those shown in .

Fig. 7.

I L
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IV SPLIT GWP METHOD WITH MULTIPLE CROSSINGS

The calculations presented so far have split the incident

packet once, when it approached the curve crossing region. As a

result the newly formed packet G1 oscillates in the ionic state

forever. In reality the trapped packet G1 splits off a neutral

packet whenever it approaches the curve crossing point and as a

result the amplitude of the ionic packet dwindles, and a

succession of outgoing neutral packets are created. This behavior

is the GWP description of the "predissociation" of the ionic

state.

In order to test whether SGWP generates such behavior we

carried out the SGWP calculation shown schematically in Fig. 11:

in Fig. 11(a) packet 2 is split to generate packet 1; after that

packet-2 is turned around and leaves the surface while 1 moves in

the ionic well (Fig. l1b); when packet 1 approaches the crossing

region again, we use SGWP to generate a new neutral packet 2';

this leaves the surface, while 1 turns back towards it; this

succession is repeated until the amplitude of 1 becomes

negligible.

An idealized time of flight (TOF) measurement applied to

this process will give peaks corresponding to the arrival times of

the successive neutral packets, separated by a time comparable

with the period of the motion of G in the ionic well. Such a

result corresponds to an experiment in which the incident state is

a packet that is well localized in space. If the experiment is

carried out with an incident state which is close to a plane wave

we must describe it by using a train of several incident packets;

the succession of emerging neutral packets will then be continuous

in time. Moreoever since the time resolution of TOF detectors is

poor, as compared to the period of the motion in the ionic well,

the time "granularity" given by GWP is not a practical

shortcoming.

The results of this multiple splitting calculation are shown

in Fig. 12. The Hamiltonian is that described in Fig. 1, X = 42

and = 0.3. The trajectories of the centers of various packets

S-. -- -~- - - - - - - - - - - - -.--
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are plotted in Fig. 12a. We see that the ionic packet G1 is ,,

formed at t=O and reaches the crossing point at t - 6; later G

turns around and leaves the surface, while G oscillates in the

ionic well. As G moves away from the surface a new neutral
1 IV

packet G2 is created at t a 9, before G reaches the crossing

point. Immediately G leaves the surface while G continues to

oscillate, creating G2 when it approaches the crossing point

again. The probability that the particle is ionic is shown in

Fig. 12b. Clearly the creation of G and G diminishes P (t), as
2 21

expected. It is not surprising that MTA give very poor results

for this case.

We found this procedure to be rather stable with respect to

the precise point where the packets are split. If the splitting

is done too early the amplitude of the new packet goes to zero; if

it is done too late the result depends on the splitting point.

There is a strip of about 1A width, ahead of.the crossing region,

in which splitting can be done without affecting the results.

I.° -
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V. THE EFFECT OF DISSIPATION BY PHONONS

V.1 Introductory Remarks

The problem of curve crossing or tunneling in quantum

systems coupled to a heat bath is a topic of much current g16 ° '
interest; one would like to formulate a theory which predicts

the manner in which energy dissipation and dephasing by thermal

fluctuations change tunneling rates. The present model is also

relevant -in surface science- to the problem of sticking induced

by curve crossing followed by inelastic interactions between the

incident particle and the lattice. Both phonons and electron hole

pair excitations may be important and both can be treated by a

model in which the incident particle is coupled strongly to

independent bosons 31a

In this section we describe a theory in which the lattice

motion is coupled to the quantum degrees of freedom through a mean

trajectory approximation. This permits us to combine the GWP

quantum dynamics of the particle with a classical Langevin14a52

equation describing the motion of the lattice. Other models which
couple curve crossing dynamics to stochastic variables simulating

a heat bath have been presented in the literature.
5 3

V.2 The model

We consider a particle colliding with a one dimensional atom

chain (Fig. 13).. The Hamiltonian is

H =-(h2 /2M) 2 /3R2- (h2 /2m)a 2/ar2 - ( 2 /2m)Z 2 /aq 2+H(rRx)

(V. 1)
+ V L (r,{q } ..-.-

The lattice atoms are divided here into two groups: the
primary atoms whose coordinates are denoted r and the secondary

atoms having the coordinates q. The concrete example used here

has only one primary atom. The independence of the electronic

Hamiltonian H(r,R,x) on the positions of the secondary atoms
implies that only the atoms in the primary zone interact with the

incident particle. We assume that the lattice is harmonic (i.e.,
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the lattice potential energy VL(r,(ql} is quadratic) but do not :!

linearize the interaction between the incident particle and the >''

primary zone atoms.

V.3 The Hartree approximation

We make now the Hartree approximation, which assumes a wave
function of the form

= XL(r,{qi);t)[G 1 (Rt)41 (R,r,x) + G2(Rt)$2 (R,r,x)] (V.2)

where 0. are the electronic wave functions (1 is neutral and 2 is

ionic), G and G are the nuclear wave functions of the incident
1 2

particle, and XL is the wave function of the lattice.

Using the minimum error method1 0 and the properties (11.4)54"-<
of the electronic wave functions leads to-.

2 2 2
iY3Gil3t = -(2 /2m)3 G /aR + <H > G + <H >G j  (V.3)

1 ii L i ij>Lj

for i =i or 2 and j - i, and to

t= ( 2 /) 2 2_22 2 2 e2ihX L /3t=( /2m)32XgL/3r2-(h2/2m)Z82X L /aq +(V L(r,(qi )+V e ff(r)]X L "

(V.4)
Here

* N
<H IX (r,q}))H (R,r)X (r,{qi})drrT dq (V.5)

ij>tJ L i ij L(V.5) i

2 2 .
Vff(r) = Z E IG.(R) H (R,r)G (R)dR (V.6)

i=1 j=1 J "

and

H(R,r) = J$.(R,r,x) H(R,r,x)l$(R,r,x)dx. (V.7)
i j"

Because we made the Hartree approximation the primary atom

interacts with the incoming particle through the effective

potential (V.6). This is the sum of the ionic potential H (Rr)11,- .

. . .. .

.. ......- ...................................... •" " - " "
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averaged over the distribution G (R,r;t)G (R,r;t) (which is

proportional to the probability that the particle is an ion ""

located at R) plus the neutral potential H22 (R,r) averaged over2
the distribution G (R,r;t)G1(R,r;t) (which is proportional with r
the probability that the particle is neutral and is located at R)

plus the interference term 2RejdRG (R,r;t) H12(R,r) G2 (Rr;t).

To do better than the Hartree approximation we would have to

use the wave function

2
4o(R,r{q),x;t) = XL({qi}) Z G1 i(rR;t)$i(Rr,x) (V.8)

i=l

which incorporates the correlated quantal motion of the primary

zone atoms and that of the incident particle; the Hartree

approximation is made for the secondary lattice atoms only.

It is instructive to think under what conditions we can hope

that the Hartree approximation is satisfactory. This

approximation simplifies the force exerted by the incident atom on

the primary atom, by averaging it over the state of the incident

particle. If the particle state Z Gi 4 is predominantly ionic

than the force exerted on the primary atom resembles that caused

by the ion; in the opposite case the interaction resembles that

exerted by the neutral. In the intermediate case the force is the

average of the ionic and neutral forces, with the corresponding

quantum weights. For the present problem one may assume that the -

lattice-atom energy transfer and dephasing are most efficient at

the moment of the impact and that the repulsive part of the

potential is most important. Since the repulsivewalls for ion

and neutral are similar it may not be essential that the effective

potential mixes them in exactly the right way. On the other hand,

if electron hole pair excitations and the polarization of the
electron-gas (i.e. "image effect") are important we might want to

use the non-Hartree wave function Eq (V.8). This will treat the

coupling of the ion to the electron gas on a different footing

than the coupling of the neutral.

.........................
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V.4 The mean traJectory approximation for lattice motion

The equations (V.3-6) can be further simplified by assuming
that: (a) the lattice wave function is, throughout the collision,

Gaussian in the variables q and r; and that (b) the mean square

displacement of the variable r in this Gaussian state is very
small. Assumption (b) allows us to perform the integral in Eq.

(V.5) by the steepest descent method, to obtain

<H ij> = Hij (R,r(t)) , (V.9)

where r(t) is the mean position of the primary atom at time t:

N
r(t) = Sdr i1 dqi X(r,{q);t) rX (r,(q};t). (V.10)

i=1

Due to Eq. (V.9) and (V.3) the wave functions G and G2 no
longer depend on the lattice wave function, but only on the mean

primary atom position r(t). From Heller's work6 we know that if

the Hamiltonian is harmonic in the variables {q and the

Gaussian wave function X is narrow with respect to r, then itL
follows that r(t) and q (t) satisfy classical equations of motion:

..."mr(t) = -3Veff/ r(t) - mwi2 (r(t)-q1(t) ) , (V.11) .]ii..
-2"

Wi mqi(t) = qi- 1 (t)-2qi(t) + qi+ (t), 1=1,2 .... (V.12)

with

q0 (t) a r(t)

The mean trajectory approximation decouples thus the wave
functions G ,i=1,2 from the wave function X the only lattice . -

information that is needed is the time evolution of the center of
the packet representing the primary lattice atom; the latter moves

classically on a mean potential which is the average interaction

between the incident particle and the primary atoms over the

.'4

r
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particle wave function.

To assess the validity of the mean trajectory approximation

we must quantify the demand that the Gaussian X is narrow. Since
L

this assumption is used to justify the integration of (V.5) by the

Laplace method, the width l(t) of the Gaussian ..
g(r)=SX (r,q ..qN)X (r,ql.. q ndq1 must be smaller than the
length L over which the function H1 (rR) changes with r.

Furthermore, for r(t) to move classically under the influence of

the potential Veff(r(t)) we must have10 '1 1  &".i
2 -1[33 31 (t)<<4[3V (r(t))/8r(t)]-l[ (r(t))/3r(t) ]  a i(t). Aneff efforder of magnitude estimate of the width l(t) of the Gaussian g(r)

is the mean displacement of the primary atom 12 (P/mw)

.cothw/2kBT].2

As a side remark we note that this expression for 1 does

not lead to a divergence, in the present theory, for w-oO. Indeed
2as w-0 and 1- the Gaussian g(r) tends to 16(r-r(t)). Since in

the present theory the wave function appears everywhere in

integrals over frequency the quantity l(w) is multiplied with the

density of states, leading thus to expressions containing

fdwp(w)l(w). Since p(w) = 3w /wD (for a Debye model) 1(w)p(w) is

proportional to w as &- 0. Thus in the w-O limit the integrals

thrGugh which l(w) appears in the theory are well behaved.

We can summarize the conditions under which the Gaussian

g(r) is sufficiently narrow by requiring

(h/m)coth(hw/2kBT)<<max[L(t) 2,(t) 2] .X2.

In the high temperature limit hw/kBT<<1 and coth(hw/2kT)-2kBT'hw.
2 2BBThus the condition (2h /mx )<<kBT ensures the validity of the meanF

trajectory approximation in the high temperature limit. This

result makes sense, since in the high temperature limit the

important frequency in the system is kBT/h. We can use it to form

the action A = mX2kBT/h by using x as a typical length of the ri
potential. Then a classical trajectory limit should be valid if
h/A<<, which leads to the high temperature condition obtained

%-%iq
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above. -

V.5 A summary of the equations

After we made the mean trajectory approximation for the .-,,-

motion of the primary atom and took the classical limit for the

I- motion of all the lattice atoms, the nuclear wave functions G

i- satisfy

A~aG (R,t)/at=-(h2/2M)32G I(R,t)/3R2+H ii(R,r(t))G (R,t) r-

+ Hij(Rr(t))Gj(Rt) , i,j=1,2 and ixj.(V.13)
1JI

These equations are solved by the MEM-SGWP method.

To compute r(t) we use the Eqs. (V.11-13) and the Langevin

equation method proposed by Adelman and Doll. 5 2 The version

implemented here is the ghost atom method developed by Garrison

and Adelman 55 and ShugardTully,and Nitzan.56 This solves

2!
mr(t) =-3Veff/8r(t)-mw2 (r-r) (V.14)

and
* m () =-m

2  r)m 2

m ) M -mw 2 (r - r )- m wr - mydr /dt+F(t) (V.15)
g g g °

In choosing the friction coefficient y and the ghost atom

K frequency wg we follow Garrison and Adelman. The fluctuating

force has the correlation function

<F(t)F(O)> = 2mkBTy6(t) , (V.16)

which assumes the high temperature (i.e. classical) limit when the
thermal average is performed. Some quantum effects can be put

back into the theory by replacing 2kBT with hwcoth(hw/2kBT). TheB B;
qualitative effect of using the expression (V.16) is that at low

temperature (i.e. hw/kBT > 1) it produces more noise than the real

quantum system does. Furthermore, Eq. (V.16) does not give

different weights to energy loss (i.e. Stokes) and energy gain

(i.e. anti-Stokes) processes. This should introduce very large

S. . * * .,*.

- -. -,,-. ,...- . . . .... . . , .. . . _* . A ., ~. . .. .. ,~:~-~:*



IVL W:

30

[

errors at the lowest temperatures where the Stokes processes have

high intensity and that of anti-Stokes processes is almost zero.

As Tully's extensive work has demonstrated the method based on Ea.

(V.16) should be reliable at high temperatures (i.e. hw<<k T). r
B

V.6 Illustrative numerical results

We present results of several calculations carried out by

solving Eqs. (V.13-16). The lattice parameters are
-3WD=1.43x1O a.u. and the mass of Ni. The projectile mass is that

of Na and the matrix H (R,r(t)) is defined by Eqs. (11.1-3) with

R replaced with R-r(t); the values of the parameters are those

listed in Table I under Hamiltonian I. The coupling strength is

p=0.3 and the incident kinetic energy is given by X=43 (the
2 - 2

kinetic energy is mv /2 = 89.9. eV).

In Figs. 13a we show the trajectory followed by the packets

(one crossing only) in the case when the lattice is rigid. The

effect of allowing the lattice to move, at T=OK is shown in Fig.

13b, where the amplitude of the ionic packet decays as a result of

phonon excitations. The zero point energy of the lattice was

included in the classical Langevin equation. In Fig. 13c we show

the energy E (t) of the ionic packet (see Eq. (111.4)) as a

function of the packet position. The arrows indicate the flow of

time. The behavior of the system at non-zero temperatures is .".'.-

shown in Figs. 14a and b. At lower temperature (T=GD' where G D isDebye temperature) the ion is quickly equilibrated, and phonon -

absorption is seen; however the amplitude does not decay as

continuously as in Fig. 13a at T=O. For T= 5eD (Fig. 14b) the ion

has not settled to a low amplitude even after three oscillations

in the well.

These calculations illustrate the fact that the addition of

a thermal dissipative channel drives the Gaussian wave function in

a manner that resembles classical mechanics. The computation is

rather inexpensive and we estimate that it is possible for three

dimensional models.

VI. Conclusions

We have presented a Guassian wave packet theory, for a curve

r
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crossing system, which has one packet per electronic state. The

most interesting feature of the theory is that it permits

tunneling, in the sense that a packet incident in a barrier splits
tehcourse ofe proagatio isr generalyan shuldber usfu inkt i !into one packet reflected by the barrier and one which penetrates

behind it. The procedure for multiplying the number of packets in

numerous other applications of the GWP method to phenomena in

which wave function splits spontaneously, in the course of the

collision, into spatially disjoint pieces.
Another new development is the discussion of various .-

approximations involved in coupling the curve crossing system

whose properties are described within a GWP formulation to a many-

body classical system, such as a lattice. The use of Hartree - -.

approximation permits an approximate but self-consistent treatment

of this problem. The classical limit for the motion of the many-

body system is not necessary; the use of the GWP method to

propagate the bath variables quantum mechanically is feasible, as

demonstrated recently by Singer and Smith.5 8

The numerical studies presented here explored the stability

of the method and studied the qualitative behavior of the packets.

We are now developing an exact method for solving this problem and

hope to report soon a comparison between the results obtained with

SGWP and-the exact ones. If the SGWP method turns out to have

satisfactory accuracy than it can be used for three-dimensional

studies for which exact calculations are much more difficult. _

We had two reasons for undertaking this study. First, we

were curious about the behavior of the packets in a strongly non-

classical situation, such as a two state system at energies for

which tunneling plays an important role. Second, we are searching

for a method of doing very inexpensive three-dimensional curve

crossing calculations for a quantum system imbedded in a classical

heat bath; since the behavior of the bath must be generated by

repeated use of classical molecular dynamics the ability to "

calculate the quantum part cheaply (but reliably) is of paramount

importance. The GWP method seems a natural candidate for this

ii
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task.
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APPENDIX

The Equations used for the MEM-SGWP propagation of the

packets are:5

ih - 2 2m+rV (2)+Vf(2)] M (2)
1 ii 1 l~j ij~ i

(A.1)
[Vii(0)+Vij(O)I ]M(4) )Bi

+ 2(x 2/m B (.M.(2)[V (0) + V (0)]
1 1 1 ii ij

(A-2)
-Mi(0) (Vii(2) +V j2]

=-V ii(12) + (M.i(2)Ima 1 Maivi() (A-3)

= P I/m + (21ma1 i m(2)) -1 Im V 1 i(1) (A.4)7

where

1 (n SGp(R) (R-R p t))G Gi(R) .(A.5)

V.(n = X R*(RR(), (R)G.(R)dR(A6
1j 1 ij

Bi = M4M(0) - M(2) 2 ) (A.7)

and i=1,2, j=i,2, ixj.

Also note that

-v i1Mm(2) =-JdRG.G.(8H../8R)/SdRG G.

- --- (SdRG:H.1 G /jdRG.G.)}A8

and that

2

B (M (2)V 1.(0)-V..(2)M.(0))=- (1/2) 2(SdG.H..G /JdRG.G.

(A. 9)

-7r



Table I. The values of the parameters used In Eqs. (11.1-3)
to define the Hamiltonians. -.

Hamiltonian I Hamiltonian II

atomic units other atomic units other

U 0.0 25H(a) 0.68 eV 0.18 4H(a) 5.0 eV

Ae O.OO5H(a) 0.136 eV 0.14 7H(a) 4.0 eV
1 a(b) .13A.

2.5 a 1.32 A 2.5 a (b ) 32A

R 5.0 a(b) 2.64 A 5.0 a(b) 2.64A
0

R 12.5 a () 6.6 A 9.0 a (b) 4.75A

* 0.1 or 0.3 0.1 or 0.3 0.1 or 0.3 0.1 or 0.3

m 4 23 00 (c) 2 2 .9 9 1 (c) 12 ,8 00 a u. (d) 6 .94 (d)

(a) Hartree

(b) a is Bohr radius

(c) the mass of Na

(d) the mass of Li

. ,. .



Table II. The energies of the Incident packets. For the
definition of column headings see the text.r

Incident energy-barrier height

X P 2/2m AP 2 /2m f=. =.

90 2.91 1.39 x 10 2  
--- 9.21 x 101

10'.5 1.76 x 10 -2 7.60 x 0 3.70 x 10-

110 1.95 1.42 x 102 3.48 x 101 -4.16 x 101

-2 -2120 1.63 1.17 x 10 3.50 x 10 -3.54 x 101
-3-

130 1.39 9.82 x 10 -2.10 x 10 -5.99 x 10
-3 -140 1.20 8.34 x 10 -4.05 x 10 -9.49 x 101

-3150 1.05 *7.25 x 10- -5.60 x 10---

-- eV eV eV eV

* (a) Massey parameter (Section 11.4)



Table III. The probability that a particle starting in the-
state 2 emerges in state 1 (one crossing only). F

LHA- MEM- MTA LHA- MEM- MTA

SGWP SGWP SGWP SGWP

*40 0.954 0.655 1.0 35 0.429 0.404 0.807

*41 0.979 0.588 1.0 36 0.409 0.382 0.888

42 0.954 0.500 1.0 37 0.372 0.334 0.978

43 0.887 0.404 1.0 t 38 0.341 0.286 1

44 0.750 0.308 1.0 39 0.370 0.235 1

*45 0.622 0.219 1.0~ 40 0.395 0.18a 1

*The packets turn around before reaching the curve crossing

region.
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FIGURE CAPTIONS

Fig. 1. The diabatic potentials Hii(R), i = 1,2 (see Eqs.

11.2), the coupling Hi(R) (dash-dotted line, right r
hand side scale) and the adiabatic potentials Ha (R),

(dashed lines) i=1,2. The parameters are those for

Hamiltonian I in Table I, with P=0.3. The adiabatic

and diabatic potentials overlap everywhere except in

the crossing region.

Fig. 2. The trajectories of the centers R1 (dashed line) and

R2 (full line) of the ionic and neutral packets,

respectively, obtained by MEM-SGWP. The dash-dotted

line is the MTA result. The Hamiltonian I with p=0.3

(see Table I for parameter values and Fig. 1 for

plots) was used for all calculations. The Massey

parameters for the incident G2 packets are: (a)

k=37; (b) X=38; (c) X=42 and (d) X=43. The kinetic

energy is mv /2 = 3.30 X-2 Hartree =

89.9 X-2 eV.

Fig. 3. The time evolution of the probability that a neutral

particle approaching the wall remains neutral. The

full lines are the results obtained with MEM-SGWP and

the dashed lines those given by MTA. The parameters

are those used in Fig. 2.

Fig. 4. The adiabatic potentials H1 1 (R) and H2 2 (R) (full

lines) and the diabatic coupling H12 (R) (dashed - p -

dotted line), given by Eqs. (11.1-3) and the

parameters for Hamiltonian II of Table I, with p=0.3.
a aThe diabatic curves H and H are the dashed lines.

They differ from the diabatic curves only in the

crossing region. The arrows on the right hand side

indicate the kinetic energy of the incident packets.

"- - -" " . ... ; . " -;. ;- .' - . : -. . . - ".. .- " . .. .
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For conversion from the Massey parameter X to the

kinetic energies see Table II.

Fig. 5. The trajectories R (t) and R2 (t) of the centers of

the ionic (full lines) and neutral (dashed lines)

packets G and G respectively. The calculations1 2'
are for the Hamiltonian II defined by Eqs. (11.1-3)

and the parameters given in Table I, with p=0.3. The

incident Massey parameters are: (a) X=100; (b) X=110;

(c) X=120; (d) X=130; (e) X=140; (f) X=150. The

calculations (a) - (c) correspond to kinetic energies

above the barrier, the others are below. For

conversion of X to kinetic energies see Table II.

a aFig. 6. The adiabatic energy surfaces H and H
11 22 (ah

dotted lines) and the packet energies E1 (t) and E2 (t)

defined by Eq. (111.4)). The calculations are for

the Hamiltonian II defined by Eqs. (11.1-3) and the

parameters given in Table I with p=0.3. The distance

R is the position of the center of the corresponding

packet. The arrows on the curves indicate the flow

of time. Various curves correspond to (a) X=100; (b)
X=110; (c) X=120; (d) k=130; (e) X=140; X=150. _'

Fig. 7. The probability that a particle starting in the L

neutral state 2 ends up in the state 1. Various

curves correspond to different Massey parameters \.

The correspondence between X and the incident kinetic

energy is given in Table II.

Fig. 8. The matrix elements H (R) (full lines) and
ii

H (dashed-dotted lines) defined by Eqs. (11.1-3) and
ij

the parameters for Hamiltonian II given in Table I.

The value of p is 0.1. The adiabatic energy curves
aHii are also given. The incident kinetic energies

. . .. . . . . . . .- j
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used in subsequent calculations, labeled by the

values of X (see Table II for conversion) are marked

on the graph.

.I"-
Fig. 9. The adiabatic energy surfaces of Fig. 8 (dashed-

dotted lines) and the energies E (R(t)) and E2 (R(t))

of the ionic and neutral packets, respectively (see

Eq. (111.4) for definition). (a) X=90; (b) X=100; (c) |

X=1l0; (d) X=120; (e) X=130; (f) X=140. The Massey

parameter X indicates the incident kinetic energy

(see Table II).

Fig. 10. The probability Pl(t) that a neutral particle is

ionized, for the Hamiltonian shown in Fig. 8 the

curves corresponding to different incident kinetic

energies are labelled by X. For the relationship

between X and kinetic energy see Table II.

Fig. 11. Schematical representation of successive splitting of

packets. See the text for explanation.

Fig. 12. The behavior of the Gaussian packets when multiple

splitting is performed. The calculation is done with

Hamiltonian I (see Eqs. (11.1-3) and Table I), =0.3
and X=42 (mv2 = 89.9 X-2 (a) The evolution of

m0  ) 1-

the centers of the neutral packets R2 ' R2 ' R2 and

that of the ionic packet R1. (b) the probability

P (t) that the system is ionic.

Fig. 13. Schematic representation of the lattice atom system

and its parameters.

Fig. 14. The results of a calculation using the Hamiltonian I2 -2
(Table I) X=43 (mv /2 = 89.9 X - 2 eV) and p=0.3,

coupled through a mean trajectory Langevin equation

~~~~~~~~~~~~~~~~~~.. . . . .... . , ....... .-. .-. -... ......- .. . .-- '.- . .- ....- -. ' ..- .
- - -... P.

-p.7A



to a Ni lattice with w 1.43xl. a.u. (a) The motion
Dof the centers of the ionic (R1 ) and neutral (R2)

packets for a rigid lattice; (b) the same for a

lattice at T=OK (c) the energy of the above packets

at T=OK.

Fig. 15. Same as Fig. 13b except that: (a) T=eD; and (b)

T=58D , where 8D is the Debye temperature.
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